Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite.

Identifieur interne : 000F53 ( Main/Exploration ); précédent : 000F52; suivant : 000F54

Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite.

Auteurs : Luis Muniz-Feliciano [États-Unis] ; Jennifer Van Grol [États-Unis] ; Jose-Andres C. Portillo [États-Unis] ; Lloyd Liew [Royaume-Uni] ; Bing Liu [Royaume-Uni] ; Cathleen R. Carlin [États-Unis] ; Vern B. Carruthers [États-Unis] ; Stephen Matthews [Royaume-Uni] ; Carlos S. Subauste [États-Unis]

Source :

RBID : pubmed:24367261

Descripteurs français

English descriptors

Abstract

Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.

DOI: 10.1371/journal.ppat.1003809
PubMed: 24367261
PubMed Central: PMC3868508


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite.</title>
<author>
<name sortKey="Muniz Feliciano, Luis" sort="Muniz Feliciano, Luis" uniqKey="Muniz Feliciano L" first="Luis" last="Muniz-Feliciano">Luis Muniz-Feliciano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Grol, Jennifer" sort="Van Grol, Jennifer" uniqKey="Van Grol J" first="Jennifer" last="Van Grol">Jennifer Van Grol</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Portillo, Jose Andres C" sort="Portillo, Jose Andres C" uniqKey="Portillo J" first="Jose-Andres C" last="Portillo">Jose-Andres C. Portillo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liew, Lloyd" sort="Liew, Lloyd" uniqKey="Liew L" first="Lloyd" last="Liew">Lloyd Liew</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Molecular Biosciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Bing" sort="Liu, Bing" uniqKey="Liu B" first="Bing" last="Liu">Bing Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Molecular Biosciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carlin, Cathleen R" sort="Carlin, Cathleen R" uniqKey="Carlin C" first="Cathleen R" last="Carlin">Cathleen R. Carlin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carruthers, Vern B" sort="Carruthers, Vern B" uniqKey="Carruthers V" first="Vern B" last="Carruthers">Vern B. Carruthers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matthews, Stephen" sort="Matthews, Stephen" uniqKey="Matthews S" first="Stephen" last="Matthews">Stephen Matthews</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Molecular Biosciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Subauste, Carlos S" sort="Subauste, Carlos S" uniqKey="Subauste C" first="Carlos S" last="Subauste">Carlos S. Subauste</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America ; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America ; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24367261</idno>
<idno type="pmid">24367261</idno>
<idno type="doi">10.1371/journal.ppat.1003809</idno>
<idno type="pmc">PMC3868508</idno>
<idno type="wicri:Area/Main/Corpus">000F15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F15</idno>
<idno type="wicri:Area/Main/Curation">000F15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F15</idno>
<idno type="wicri:Area/Main/Exploration">000F15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite.</title>
<author>
<name sortKey="Muniz Feliciano, Luis" sort="Muniz Feliciano, Luis" uniqKey="Muniz Feliciano L" first="Luis" last="Muniz-Feliciano">Luis Muniz-Feliciano</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Van Grol, Jennifer" sort="Van Grol, Jennifer" uniqKey="Van Grol J" first="Jennifer" last="Van Grol">Jennifer Van Grol</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Portillo, Jose Andres C" sort="Portillo, Jose Andres C" uniqKey="Portillo J" first="Jose-Andres C" last="Portillo">Jose-Andres C. Portillo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liew, Lloyd" sort="Liew, Lloyd" uniqKey="Liew L" first="Lloyd" last="Liew">Lloyd Liew</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Molecular Biosciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Bing" sort="Liu, Bing" uniqKey="Liu B" first="Bing" last="Liu">Bing Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Molecular Biosciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carlin, Cathleen R" sort="Carlin, Cathleen R" uniqKey="Carlin C" first="Cathleen R" last="Carlin">Cathleen R. Carlin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carruthers, Vern B" sort="Carruthers, Vern B" uniqKey="Carruthers V" first="Vern B" last="Carruthers">Vern B. Carruthers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Matthews, Stephen" sort="Matthews, Stephen" uniqKey="Matthews S" first="Stephen" last="Matthews">Stephen Matthews</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Molecular Biosciences, Imperial College London, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Subauste, Carlos S" sort="Subauste, Carlos S" uniqKey="Subauste C" first="Carlos S" last="Subauste">Carlos S. Subauste</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America ; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America ; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Apoptosis Regulatory Proteins (physiology)</term>
<term>Autophagy (physiology)</term>
<term>Autophagy-Related Protein 7 (MeSH)</term>
<term>Beclin-1 (MeSH)</term>
<term>CHO Cells (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cricetinae (MeSH)</term>
<term>Cricetulus (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>ErbB Receptors (antagonists & inhibitors)</term>
<term>ErbB Receptors (genetics)</term>
<term>ErbB Receptors (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Membrane Proteins (physiology)</term>
<term>Mice (MeSH)</term>
<term>Oncogene Protein v-akt (metabolism)</term>
<term>Toxoplasma (immunology)</term>
<term>Toxoplasma (physiology)</term>
<term>Toxoplasmosis (enzymology)</term>
<term>Toxoplasmosis (genetics)</term>
<term>Toxoplasmosis (immunology)</term>
<term>Ubiquitin-Activating Enzymes (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Autophagie (physiologie)</term>
<term>Bécline-1 (MeSH)</term>
<term>Cellules CHO (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Cricetinae (MeSH)</term>
<term>Cricetulus (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Protéine oncogène v-akt (métabolisme)</term>
<term>Protéine-7 associée à l'autophagie (MeSH)</term>
<term>Protéines membranaires (physiologie)</term>
<term>Protéines régulatrices de l'apoptose (physiologie)</term>
<term>Récepteurs ErbB (antagonistes et inhibiteurs)</term>
<term>Récepteurs ErbB (génétique)</term>
<term>Récepteurs ErbB (métabolisme)</term>
<term>Souris (MeSH)</term>
<term>Toxoplasma (immunologie)</term>
<term>Toxoplasma (physiologie)</term>
<term>Toxoplasmose (enzymologie)</term>
<term>Toxoplasmose (génétique)</term>
<term>Toxoplasmose (immunologie)</term>
<term>Ubiquitin-activating enzymes (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>ErbB Receptors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>ErbB Receptors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>ErbB Receptors</term>
<term>Oncogene Protein v-akt</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Apoptosis Regulatory Proteins</term>
<term>Membrane Proteins</term>
<term>Ubiquitin-Activating Enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Récepteurs ErbB</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Toxoplasmose</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Toxoplasmosis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Toxoplasmosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Récepteurs ErbB</term>
<term>Toxoplasmose</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Toxoplasma</term>
<term>Toxoplasmose</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Toxoplasma</term>
<term>Toxoplasmosis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéine oncogène v-akt</term>
<term>Récepteurs ErbB</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Autophagie</term>
<term>Protéines membranaires</term>
<term>Protéines régulatrices de l'apoptose</term>
<term>Toxoplasma</term>
<term>Ubiquitin-activating enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
<term>Toxoplasma</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Autophagy-Related Protein 7</term>
<term>Beclin-1</term>
<term>CHO Cells</term>
<term>Cells, Cultured</term>
<term>Cricetinae</term>
<term>Cricetulus</term>
<term>Enzyme Activation</term>
<term>Humans</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Bécline-1</term>
<term>Cellules CHO</term>
<term>Cellules cultivées</term>
<term>Cricetinae</term>
<term>Cricetulus</term>
<term>Humains</term>
<term>Protéine-7 associée à l'autophagie</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24367261</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003809</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1003809</ELocationID>
<Abstract>
<AbstractText>Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Muniz-Feliciano</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Grol</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Portillo</LastName>
<ForeName>Jose-Andres C</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liew</LastName>
<ForeName>Lloyd</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Bing</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carlin</LastName>
<ForeName>Cathleen R</ForeName>
<Initials>CR</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carruthers</LastName>
<ForeName>Vern B</ForeName>
<Initials>VB</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matthews</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Molecular Biosciences, Imperial College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Subauste</LastName>
<ForeName>Carlos S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America ; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America ; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 EY007157</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI089474</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>G0800038</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>T32-AI089474</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM081498</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>EY018341</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>BB/E02520X/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>R01 AI046675</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>MR/J006874/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>P30 EY11373</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051017">Apoptosis Regulatory Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491997">BECN1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071186">Beclin-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="C512478">EGFR protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D066246">ErbB Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051058">Oncogene Protein v-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.45</RegistryNumber>
<NameOfSubstance UI="C509349">Atg7 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.45</RegistryNumber>
<NameOfSubstance UI="D000071193">Autophagy-Related Protein 7</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.45</RegistryNumber>
<NameOfSubstance UI="D044764">Ubiquitin-Activating Enzymes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051017" MajorTopicYN="N">Apoptosis Regulatory Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071193" MajorTopicYN="N">Autophagy-Related Protein 7</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071186" MajorTopicYN="N">Beclin-1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016466" MajorTopicYN="N">CHO Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003412" MajorTopicYN="N">Cricetulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066246" MajorTopicYN="N">ErbB Receptors</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051058" MajorTopicYN="N">Oncogene Protein v-akt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014122" MajorTopicYN="N">Toxoplasma</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014123" MajorTopicYN="N">Toxoplasmosis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044764" MajorTopicYN="N">Ubiquitin-Activating Enzymes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24367261</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1003809</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-13-01236</ArticleId>
<ArticleId IdType="pmc">PMC3868508</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2008 Nov 13;4(5):458-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18996346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2009 Oct;11(10):1233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19749745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Nov;1(3):e24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16304607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Dec 2;15(23):6541-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8978681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Feb 5;152(3):563-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Jan;6(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18059289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Trop. 2002 Feb;81(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11801218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasite. 2008 Sep;15(3):197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18814681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 23;338(6110):1072-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23112293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jul 27;186(2):255-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19635843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2009 Nov;25(11):491-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19744886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2012 Sep;227(9):3178-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2013 Jul;15(7):1212-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Mar 15;176(6):3796-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16517750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Jun;65(12):1900-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18327664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 1999 Jun;92(2):87-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10366534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1999;68:965-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2011 Sep;23(9):1466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21554950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Feb 7;201(3):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15684324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Gene Ther. 2006 May;13(5):530-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16410821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 May;73(5):3115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15845519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 18;8(6):e66306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):18384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 Aug;77(4):912-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Dec 15;177(12):8693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 29;277(48):45892-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 12;275(19):14624-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 Sep;4(9):a011189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Feb 23;25(4):491-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2008;47:33-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18512339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasite Immunol. 2009 Dec;31(12):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19891610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microsc Res Tech. 2013 Dec;76(12):1213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2006 Dec;18(12):2262-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Dec 15;181(12):8719-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19050292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2010 May 28;32(5):654-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 16;284(3):1694-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2002 Feb 1;115(Pt 3):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11861763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):48127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Mar 15;1(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2011 Jun;13(6):797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21535344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Oct;5(10):e1000609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19816569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2003 Nov;42(6):498-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14559069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 4;304(5676):1500-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013 Jul;11(7):e1001612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2006 Jan-Mar;2(1):24-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2008 Apr 1;121(Pt 7):947-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18319299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21307189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1999 Dec 20;190(12):1783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 May 15;119(Pt 10):2119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16638808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(9):e1001099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20844577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Oct 28;280(43):36185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2001 Feb;17(2):81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11228014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11252954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(7):e11733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20661303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2013 Jun;81(6):2002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23509150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 25;277(5325):567-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9228007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 4;307(5710):727-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15576571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Nov 18;280(46):38583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2009 Feb;88(2):117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19013662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2011;27:107-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21801009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Apr 21;125(2):261-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16630815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jun 3;21(11):2526-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2004 Aug;136(2):309-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15478810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1996 Mar;5(3):531-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16509032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Feb 11;287(5455):1037-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10669415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Aug 10;249(4969):641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2200126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Sep;116(9):2366-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16955139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1997 Nov 1;159(9):4452-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9379044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2007 Jul;19(7):1554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2011 Mar;240(1):72-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21349087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Mar 5;140(5):731-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20211141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Aug;2(8):e84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16933991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 15;277(11):9405-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jan 20;469(7330):323-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G614-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2006 Dec;5(12):3209-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2003 Jan;47(1):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12499207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(12):e14472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2009 Jun;3(1):81-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19636952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2007 Feb;10(1):83-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16837236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2007;262:1-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 1994;45:27-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7707991</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
<li>Michigan</li>
<li>Ohio</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Muniz Feliciano, Luis" sort="Muniz Feliciano, Luis" uniqKey="Muniz Feliciano L" first="Luis" last="Muniz-Feliciano">Luis Muniz-Feliciano</name>
</region>
<name sortKey="Carlin, Cathleen R" sort="Carlin, Cathleen R" uniqKey="Carlin C" first="Cathleen R" last="Carlin">Cathleen R. Carlin</name>
<name sortKey="Carruthers, Vern B" sort="Carruthers, Vern B" uniqKey="Carruthers V" first="Vern B" last="Carruthers">Vern B. Carruthers</name>
<name sortKey="Portillo, Jose Andres C" sort="Portillo, Jose Andres C" uniqKey="Portillo J" first="Jose-Andres C" last="Portillo">Jose-Andres C. Portillo</name>
<name sortKey="Subauste, Carlos S" sort="Subauste, Carlos S" uniqKey="Subauste C" first="Carlos S" last="Subauste">Carlos S. Subauste</name>
<name sortKey="Van Grol, Jennifer" sort="Van Grol, Jennifer" uniqKey="Van Grol J" first="Jennifer" last="Van Grol">Jennifer Van Grol</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Liew, Lloyd" sort="Liew, Lloyd" uniqKey="Liew L" first="Lloyd" last="Liew">Lloyd Liew</name>
</region>
<name sortKey="Liu, Bing" sort="Liu, Bing" uniqKey="Liu B" first="Bing" last="Liu">Bing Liu</name>
<name sortKey="Matthews, Stephen" sort="Matthews, Stephen" uniqKey="Matthews S" first="Stephen" last="Matthews">Stephen Matthews</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24367261
   |texte=   Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24367261" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020